A few years ago Wystrach and Graham (2012b) asked: “What can we learn from studies of insect navigation?” They identified that complex navigational behavior of insects can be explained via fairly simple mechanisms, such as view-matching (Wehner and Räber, 1979; Cartwright and Collett, 1983), without referring to the high-level mental mechanisms (Cheng, 1986). Furthermore, they suggested that since the navigational behavior of vertebrates, show significant convergence with insects' behavior, it is justified to consider mechanism based on egocentric views before assuming the existence of higher-level mechanisms. However, it is clear that reorientation can be accomplished in ways excluding any type of view-based-matching mechanism, such as when accomplished by a blindfolded human (Sturz et al., 2013).
In this paper, we argue that the issues described arise not because of the lack of theoretical inspiration, but rather due to an insufficient understanding of the subtleties of insect behavior. In our view, implementation of the insects' models of navigation in the explanation of the vertebrates' spatial behavior omits some important aspects, i.e., multimodal integration. Thus, we want to ask again the initial question posed by Wystrach and Graham (2012b) pointing out that significant progress in insects' research, which suggests that we might have had underestimated insects' cognitive abilities (Loukola et al., 2017; Peng and Chittka, 2017). Those results demonstrated insects' capacity to obtain abstract information from multimodal input during complex tasks. Movement through a real environment provides a variety of cues, not only visual ones, thus in the following article we argue that multimodal integration is crucial to navigation.